First Order Linear (F.O.L.) ODEs

Integrating factor (I.F.): An equation is readily integrable when the equation is multiplied by a factor $e^{\int Pdx}$ then such a factor is called **I.F.**

Construction : for
$$\frac{dy}{dx} + Py = Q \dots (i)$$

where P,Q are the functions of x or constants
To solve this problem multiply both sides of
equation (i) by $e^{\int Pdx}$
Then it becomes
 $e^{\int Pdx} \frac{dy}{dx} + Py e^{\int Pdx} = Q e^{\int Pdx}$
 $\Rightarrow \frac{d}{dx} [y e^{\int Pdx}] = Q e^{\int Pdx}$
Integrating both sides with respect to x
(w.r.t), we get
 $y e^{\int Pdx} = \int Q e^{\int Pdx} dx + c$
which is the required solution.
Construction : for $\frac{dx}{dy} + Px = Q \dots (i)$
where P,Q are the functions of y or constants
To solve this problem multiply both sides of
equation (i) by $e^{\int Pdy}$
Then it becomes
 $e^{\int Pdy} \frac{dx}{dy} + Py e^{\int Pdy} = Q e^{\int Pdy}$
 $\Rightarrow \frac{d}{dy} [y e^{\int Pdy}] = Q e^{\int Pdy}$
Integrating both sides with respect to x
(w.r.t), we get
 $y e^{\int Pdx} = \int Q e^{\int Pdx} dx + c$
which is the required solution.
 $x e^{\int Pdy} = \int Q e^{\int Pdy} dy + c$
which is the required solution.

Solve: $(1 - x^2)\frac{dy}{dx} - xy = 1$ The DE can be written in the form $\frac{dy}{dx} - \frac{x}{(1 - x^2)}y = \frac{1}{(1 - x^2)}$ Where $P = -\frac{x}{(1 - x^2)}$ and $Q = \frac{1}{(1 - x^2)}$ $IF = e^{\int P dx} \Rightarrow e^{\int -\frac{x}{(1 - x^2)} dx}$ Let $z = 1 - x^2$ then $dz = -2x dx$ $\Rightarrow -x dx = \frac{dz}{2}$	So $e^{\int \frac{dz}{2z}} = e^{\frac{1}{2}\int \frac{1}{z}dz} = e^{\frac{1}{2}\ln z} = e^{\ln \sqrt{z}} = \sqrt{z} = \sqrt{1-x^2}$ Hence the solution is $y e^{\int Pdx} = \int Q e^{\int Pdx} dx + c$ $\Rightarrow y \sqrt{1-x^2} = \int \frac{1}{(1-x^2)} \sqrt{1-x^2} dx + c$ $\Rightarrow y \sqrt{1-x^2} = \int \frac{1}{\sqrt{1-x^2}} dx + c$ $\Rightarrow y \sqrt{1-x^2} = \int \frac{1}{\sqrt{1-x^2}} dx + c$ $\Rightarrow y \sqrt{1-x^2} = \sin^{-1} x + c$
Examples .	

Exercises.		
(i)	$x\frac{dy}{dx} + 2y = x^4$	
(ii)	$\frac{dy}{dx} = \frac{y}{x} + 2x^2$	